4,203 research outputs found

    Predictions of Gamma-ray Emission from Globular Cluster Millisecond Pulsars Above 100 MeV

    Full text link
    The recent Fermi detection of the globular cluster (GC) 47 Tucanae highlighted the importance of modeling collective gamma-ray emission of millisecond pulsars (MSPs) in GCs. Steady flux from such populations is also expected in the very high energy (VHE) domain covered by ground-based Cherenkov telescopes. We present pulsed curvature radiation (CR) as well as unpulsed inverse Compton (IC) calculations for an ensemble of MSPs in the GCs 47 Tucanae and Terzan 5. We demonstrate that the CR from these GCs should be easily detectable for Fermi, while constraints on the total number of MSPs and the nebular B-field may be derived using the IC flux components.Comment: 12 pages, 2 figures, accepted for publication in ApJ

    Constraining A General-Relativistic Frame-Dragging Model for Pulsed Radiation from a Population of Millisecond Pulsars in 47 Tucanae using GLAST/LAT

    Full text link
    Although only 22 millisecond pulsars (MSPs) are currently known to exist in the globular cluster (GC) 47 Tucanae, this cluster may harbor 30-60 MSPs, or even up to ~200. In this Letter, we model the pulsed curvature radiation (CR) gamma-ray flux expected from a population of MSPs in 47 Tucanae. These MSPs produce gamma-rays in their magnetospheres via accelerated electron primaries which are moving along curved magnetic field lines. A GC like 47 Tucanae containing a large number of MSPs provides the opportunity to study a randomized set of pulsar geometries. Geometry-averaged spectra make the testing of the underlying pulsar model more reliable, since in this case the relative flux uncertainty is reduced by one order of magnitude relative to the variation expected for individual pulsars (if the number of visible pulsars N=100). Our predicted spectra violate the EGRET upper limit at 1 GeV, constraining the product of the number of visible pulsars N and the average integral flux above 1 GeV per pulsar. GLAST/LAT should place even more stringent constraints on this product, and may also limit the maximum average accelerating potential by probing the CR spectral tail. For N=22-200, a GLAST/LAT non-detection will lead to the constraints that the average integral flux per pulsar should be lower by factors 0.03-0.003 than current model predictions.Comment: 10 pages, 2 figures, to appear in the Astrophysical Journal Letter

    Probing millisecond pulsar emission geometry using light curves from the Fermi Large Area Telescope

    Full text link
    An interesting new high-energy pulsar sub-population is emerging following early discoveries of gamma-ray millisecond pulsars (MSPs) by the Fermi Large Area Telescope (LAT). We present results from 3D emission modeling, including the Special Relativistic effects of aberration and time-of-flight delays and also rotational sweepback of B-field lines, in the geometric context of polar cap (PC), outer gap (OG), and two-pole caustic (TPC) pulsar models. In contrast to the general belief that these very old, rapidly-rotating neutron stars (NSs) should have largely pair-starved magnetospheres due to the absence of significant pair production, we find that most of the light curves are best fit by TPC and OG models, which indicates the presence of narrow accelerating gaps limited by robust pair production -- even in these pulsars with very low spin-down luminosities. The gamma-ray pulse shapes and relative phase lags with respect to the radio pulses point to high-altitude emission being dominant for all geometries. We also find exclusive differentiation of the current gamma-ray MSP population into two MSP sub-classes: light curve shapes and lags across wavebands impose either pair-starved PC (PSPC) or TPC / OG-type geometries. In the first case, the radio pulse has a small lag with respect to the single gamma-ray pulse, while the (first) gamma-ray peak usually trails the radio by a large phase offset in the latter case. Finally, we find that the flux correction factor as a function of magnetic inclination and observer angles is typically of order unity for all models. Our calculation of light curves and flux correction factor for the case of MSPs is therefore complementary to the "ATLAS paper" of Watters et al. for younger pulsars.Comment: 51 pages, 23 figures, 3 tables; low-resolution figures; accepted for publication by Ap
    corecore